Solutions - Homework 2

(Due date: February 2nd @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (31 PTS)

- In ALL these problems (a, b, c, d), you MUST show your conversion procedure. No procedure = zero points.
- a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (6 pts)

-97.125, 63.3125, -71.25. □ 97.125 = 01100001.001 → -97.125 = 10011110.111 = 0x9E.E

- 03.3125 = 0111111.0101 = 0x3F.5
- □ 71.25 = 01000111.01 → -71.25 = 10111000.11 = 0xB8.C
- b) We want to represent integer numbers between (and including) -32768 to 32768 using the 2C representation. What is the minimum number of bits required? (3 pts)

Range of signed integer with *n* bits: $[-2^{n-1}, 2^{n-1} - 1]$ $\Rightarrow 2^{n-1} - 1 \le 32768 \Rightarrow 2^{n-1} \le 32769 \Rightarrow n - 1 \ge \log_2 32769 \Rightarrow n \ge 16.0000440269 \Rightarrow n = 17$ \therefore The minimum required number of bits is n = 17.

c) Complete the following table. The decimal numbers are unsigned: (4 pts)

Decimal	BCD	Binary	Reflective Gray Code
269	001001101001	100001101	110001011
102	00010000010	1100110	1010101
110	000100010000	1101110	1011001
687	011010000111	1010101111	1111111000

d) Complete the following table. Use the fewest number of bits in each case: (18 pts)

	REPRESENTATION												
Decimal	Sign-and-magnitude	1's complement	2's complement										
-16	110000	101111	10000										
-129	11000001	101111110	10111111										
-32	1100000	1011111	100000										
64	<mark>0</mark> 1000000	0100000	0100000										
0	00	111111	0										
-33	1100001	1011110	1011111										
-31	1011111	100000	100001										

PROBLEM 2 (20 PTS)

a) What is the minimum number of bits required to represent: (2 pts)

✓ 65,537 symbols?
 [log₂ 65,537] = 17 bits

✓ Numbers between (and including) 35,000 and 39,096? [[39096 - 35000 + 1]] = 13 bits

- b) A microprocessor has a 24-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
 - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes. (2 pts) Address Range: 0x000000 to 0xFFFFFF
 With 24 bits, we can address 2²⁴ bytes, thus we have 2⁴2²⁰ = 16 MB
 - A memory device is connected to the microprocessor. Based on the memory size, the microprocessor has assigned the addresses 0xA40000 to 0xA7FFFF to this memory device.
 - What is the size (in bytes, KB, or MB) of this memory device?

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

 What is the minimum number of bits required to represent the addresses only for this memory device?

As per the figure, we only need 18 bits for the addresses in the given range (where the memory device is located). Thus, the size of the memory device is $2^{18} = 256$ KB.

equired or this						Address	$\stackrel{8 \text{ bits}}{\longrightarrow}$
	1010 0100	0000	0000	0000	0000:	0xA40000	
	1010 0100	0000	0000	0000	0001:	0xA40001	
for the							
re the						↓ ↓	•
size of	1010 0111	1111	1111	1111	1111.		
			± ± ± ±	± ± ± ±	±±±±•	VAR / FFFF	

- c) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (12 pts)
 What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? (2 pts) Address Range: 0x000000 to 0x3FFFFF. To represent all these addresses, we require 22 bits. So, the address bus size of the microprocessor is 22 bits. The size of the memory space is then 2²² = 4MB.
 - If we have a memory chip of 512KB, how many bits do we require to address 512KB of memory? 512KB memory device: $512KB = 2^92^{10} = 2^{19}$ bytes. Thus, we require 19 bits to address the memory device.
 - We want to connect the 512KB memory chip to the microprocessor. For optimal implementation, we must place those 512KB in an address range where every single address shares some MSBs (e.g.: 0x000000 to 07FFFF). Provide a list of all the possible address ranges that the 512KB memory chip can occupy. You can only use the non-occupied portions of the memory space as shown below. (8 pts)

The 19-bit address range for an 512KB memory would be: 0x000000 to 0x7FFFF. To place this range within the 22bit memory space in the figure, we have four options:

PROBLEM 3 (12 PTS)

Complete the timing diagram (signals *D0* and *DATA*) of the following circuit. The circuit in the blue box computes the signed (2C) operation T-6, with the result having 5 bits. T is a 4-bit signed (2C) number.
 For example: if T=1010 → DO = 1010 - 0110 = 11010 + 11010 = 10100.

PROBLEM 4 (37 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts) Example (n=8):

$\begin{array}{c} & 210 + 54 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	✓ 77 - 194 Borrow out! → $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & - \\ 194 = 0 \times C2 = 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$
Overflow! 1 0 0 0 0 1 0 0 0	1 0 0 0 1 0 1 1
 ✓ 165 + 89 ✓ 109 + 53 	✓ 130 - 43 ✓ 93 - 129
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	No Borrow Out ခ်ိဳရမ် ရောင်းရောင်းရောင်းရောင်းရောင်းမှု အမ်ားမှု အမ
165 = 0xA5 = 1 0 1 0 0 1 0 1 + 89 = 0x59 = 0 1 0 1 1 0 0 1	194 = 0xC2 = 1 1 0 0 0 0 1 0 - 125 = 0x7D = 0 1 1 1 1 1 0 1
254 = 0xFE = 1 1 1 1 1 1 1 0	$69 = 0 \times 45 = 0 1 0 0 0 1 0 1$
- <mark>-</mark> 6=1 6=1 6=1 6=1 6=1 6=1 6=1	Borrow out! \longrightarrow \mathbf{a}
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	93 = 0x5D = 0 1 0 1 1 1 0 1 - 129 = 0x81 = 1 0 0 0 0 0 0 1
Overflow!	0xDC = 1 1 0 1 1 1 0 0

- b) We need to perform the following operations, where numbers are represented in 2's complement (2C): (20 pts)
 - ✓ 358 + 157
 ✓ 109 146
 ✓ -91 + 125 ✓ -66 -127 ✓ 87 - 46

 - For each case:
 - \checkmark Determine the minimum number of bits n required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 - ✓ Perform the signed (2C) binary addition, i.e., complete all the carries (c_0 to c_n) and the summation bits (s_0 to s_{n-1}). \checkmark Determine whether there is overflow by:
 - i. Using c_n, c_{n-1} (carries).
 - Performing the operation in the decimal system and checking whether the result is within the allowed range for ii. n bits, where n is the minimum number of bits for the summands.
 - ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result?

n = 10 bits	n = 8 bits							
c ₁₀ ⊕c ₉ =1 ° ຕ ຕ ຕ ຕ ຕ ຕ ຕ ດ ດ ດ ດ Overflow! <mark>ວິວິ</mark> ວິວິວິວິວິວິວິວິວິວິວິວິ	c ₈ ⊕c ₇ =1 <mark>1</mark> ຊ ຊ ຊ ຊ ຊ ຊ ຊ ຊ Overflow! ວິວິວິວິວິວິວິວິວິວິວິວິວິວິວິວິວິວິວິ							
157 = 0 0 1 0 0 1 1 1 0 1 + 358 = 0 1 0 1 1 0 0 1 1 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
10000011	0 0 1 1 1 1 1 1							
157 + 358 = 515 ∉ $[-2^9, 2^9-1] \rightarrow \text{overflow!}$	$-127-66 = -193 \notin [-2^7, 2^7-1] \rightarrow \text{overflow!}$							
To avoid overflow:	To avoid overflow:							
n= 11 bits (sign extension)	n = 9 bits (sign extension)							
c ₁₁ ⊕c ₁₀ =0 ရှိရှိရှိရှိရှိရှိရှိရှိရှိရှိရှိရှိရှိရ	ເ ₉ ⊕c ₈ =0 <mark>1 1</mark> 0 0 0 0 0 0 0 0 0 No Overflow ວິບິບິບິ 0 0 0 0 0 0 0 0 0 0 0							
$156 = 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 +$	-127 = 1 1 0 0 0 0 0 1 +							
359 = 0 0 1 0 1 1 0 0 1 1 1	$-66 = 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$							
515 = 0 1 0 0 0 0 0 0 1 1	-193 = 1 0 0 1 1 1 1 1 1							
156 + 359 = 515 ∈ $[-2^{10}, 2^{10}-1] \rightarrow$ no overflow	$-127-66 = -193 \in [-2^8, 2^8-1] \rightarrow \text{no overflow}$							

c) For the following 8-bit 2's complement adder, complete all the outputs (S, cout, overflow) given the input values. (3 pts)

d) Get the multiplication results of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts)
 ✓ 0101×0101, 1011×0111, 1010×1110.

				0 0	1 1	0 0	1 1	x	1 C)	0 1	1 1	1 1	Х		♦	0 0	1 1	0 1	-	1 x 1		1 1	0 1	1 1	0 0	х		•	0 0	1 0	1 1	0 0	Х
				0	1	0	1										0	1	0	-	1									0	0	0	0	
			0	0	0	0										0	1	0	1										0	1	1	0		
		0	1	0	1										0	1	0	1										0	0	0	0			
	0	0	0	0								_		0	0	0	0				_					_	0	0	0	0			_	
0	0	0	1	1	0	0	1					(C	0	1	0	0	0	1	1	1					0	0	0	0	1	1	0	0	
												1	1	1	0	1	1	1	0	1	1													